Муниципальное казенное общеобразовательное учреждение Берёзовская средняя общеобразовательная школа

Утверждено: и.о. директора МКОУ Берёзовской СОШ Савкина Ю.К. Приказ № 117/б от 30.08.2023 г.

Рабочая программа по учебному предмету «Химия» для 8 - 9 класса с использованием оборудования Центра «ТОЧКА РОСТА» естественнонаучной и технологической направленностей

Срок реализации программы: 2 года

Составитель программы: Тищенко Зинаида Петровна, учитель химии МКОУ Берёзовской СОШ

Планируемые результаты

Личностные результаты

Обучающийся получит возможность для формирования следующих личностных УУД:

- определение мотивации изучения учебного материала;
- оценивание усваиваемого учебного материала, исходя из социальных и личностных ценностей;
- повышение своего образовательного уровня и уровня готовности к изучению основных исторических событий, связанных с развитием химии и общества;
 - знание правил поведения в чрезвычайных ситуациях;
 - оценивание социальной значимости профессий, связанных с химией;
 - владение правилами безопасного обращения с химическими веществами и оборудованием, проявление экологической культуры .

Метапредметные результаты

Регулятивные

Обучающийся получит возможность для формирования следующих регулятивных УУД:

- целеполагание, включая постановку новых целей, преобразование практической задачи в познавательную, самостоятельный анализ условий достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале;
 - планирование пути достижения целей;
 - устанавление целевых приоритетов, выделение альтернативных способов достижения цели и выбор наиболее эффективного способа;
 - умение самостоятельно контролировать своё время и управлять им;
 - умение принимать решения в проблемной ситуации;
 - постановка учебных задач, составление плана и последовательности действий;
 - организация рабочего места при выполнении химического эксперимента;
- прогнозирование результатов обучения, оценивание усвоенного материала, оценка качества и уровня полученных знаний, коррекция плана и способа действия при необходимости.

Познавательные

Обучающийся получит возможность для формирования следующих познавательных УУД:

- поиск и выделение информации;
- анализ условий и требований задачи, выбор, сопоставление и обоснование способа решения задачи;
- выбор наиболее эффективных способов решения задачи в зависимости от конкретных условий;
- выдвижение и обоснование гипотезы, выбор способа её проверки;
- самостоятельное создание алгоритма деятельности при решении проблем творческого и поискового характера;

- умения характеризовать вещества по составу, строению и свойствам;
- описывание свойств: твёрдых, жидких, газообразных веществ, выделение их существенных признаков;
- изображение состава простейших веществ с помощью химических формул и сущности химических реакций с помощью химических уравнений;
- проведение наблюдений, описание признаков и условий течения химических реакций, выполнение химического эксперимента, выводы на основе анализа наблюдений за экспериментом, решение задач, получение химической информации из различных источников;
 - умение организовывать исследование с целью проверки гипотез;
 - умение делать умозаключения (индуктивное и по аналогии) и выводы;
 - умение объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации.

Коммуникативные

Обучающийся получит возможность для формирования следующих коммуникативных УУД:

- полное и точное выражение своих мыслей в соответствии с задачами и условиями коммуникации;
- адекватное использование речевых средств для участия в дискуссии и аргументации своей позиции, умение представлять конкретное содержание с сообщением его в письменной и устной форме, определение способов взаимодействия, сотрудничество в поиске и сборе информации;
- определение способов взаимодействия, сотрудничество в поиске и сборе информации, участие в диалоге, планирование общих способов работы, проявление уважительного отношения к другим учащимся;
 - описание содержания выполняемых действий с целью ориентировки в предметно-практической деятельности;
 - умения учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
- формулировать собственное мнение и позицию, аргументировать и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
 - осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;
 - планировать общие способы работы; осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать;
- использовать адекватные языковые средства для отображения своих чувств, мыслей, мотивов и потребностей; отображать в речи (описание, объяснение) содержание совершаемых действий, как в форме громкой социализированной речи, так и в форме внутренней речи;
- развивать коммуникативную компетенцию, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы.

Предметные результаты

В результате изучения курса химии на уровне основного общего образования выпускник научится:

- применять основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл закона сохранения массы веществ, атомно-молекулярной теории;
- различать химические и физические явления, называть признаки и условия протекания химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- получать, собирать газообразные вещества и распознавать их;
- характеризовать физические и химические свойства основных классов неорганических соединений, проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- раскрывать смысл понятия «раствор», вычислять массовую долю растворённого вещества в растворе, готовить растворы с определённой массовой долей растворённого вещества;
- характеризовать зависимость физических свойств веществ от типа кристаллической решётки, определять вид химической связи в неорганических соединениях;
- раскрывать основные положения теории электролитической диссоциации, составлять уравнения электролитической диссоциации кислот, щелочей, солей и реакций ионного обмена;
- раскрывать сущность окислительно-восстановительных реакций, определять окислитель и восстановитель, составлять уравнения окислительно-восстановительных реакций;
 - называть факторы, влияющие на скорость химической реакции;
 - характеризовать взаимосвязь между составом, строением и свойствами неметаллов и металлов;
 - проводить опыты по получению и изучению химических свойств различных веществ;
 - грамотно обращаться с веществами в повседневной жизни.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
 - составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
 - выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
 - использовать приобретённые знания для экологически грамотного поведения в окружающей среде;
- использовать приобретённые ключевые компетенции при выполнении проектов и решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;

- объективно оценивать информацию о веществах и химических процессах;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

Содержание учебного предмета 8 класс

Раздел 1. Основные понятия химии (уровень атомно-молекулярных представлений)

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Методы познания в химии: наблюдение, эксперимент. Приемы безопасной работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, *кристаллизация, дистилляция*¹. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций.

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Кристаллические решетки: ионная, атомная и молекулярная. Зависимость свойств веществ от типа кристаллической решетки. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава веществ. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе.

Валентность химических элементов. Определение валентности элементов по формуле бинарных соединений. Составление химических формул бинарных соединений по валентности.

Атомно-молекулярное учение. Закон сохранения массы веществ. Жизнь и деятельность М.В.Ломоносова. Химические уравнения. Типы химических реакций.

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Озон, аллотропия кислорода. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород восстановитель. Меры безопасности при работе с водородом. Применение водорода.

Вода. Методы определения состава воды - анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Аэрация воды. Химические свойства воды. Применение воды. Вода - растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

 $^{^{1}}$ Материал, выделенный курсивом, ихзучается обзорно и не подлежит обязательной проверке.

Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты. Состав. Классификация. Номенклатура. Физические и химические свойства кислот. Вытеснительный ряд металлов Соли. Состав. Классификация. Номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей.

Генетическая связь между основными классами неорганических соединений.

Раздел 2. Периодический закон и периодическая система химических элементов Д.И.Менделеева. Строение атома.

Первоначальные попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы.

Периодический закон Д.И. Менделеева. Периодическая система как естественно-научная классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И.Менделеева» (короткая форма): А- и Б-группы, периоды. Физический смысл порядкового номера элемента, номера периода, номера группы (для элементов А-групп).

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне (электронном слое), его емкости. Заполнение электронных слоев у атомов элементов первого - третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И.Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановки химических элементов в периодической системе. Жизнь и деятельность Д.И.Менделеева.

Раздел 3. Строение вещества.

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степени окисления элементов.

Список лабораторных опытов:

Рассмотрение веществ с различными физическими свойствами.

Разделение смеси, состоящей из порошков железа и серы.

Изучение физических и химических явлений.

Ознакомление с образцами простых и сложных веществ, металлов и неметаллов.

Разложение основного карбоната меди (II). Реакция замещения меди железом.

Ознакомление с образцами оксидов.

Взаимодействие водорода с оксидом меди (II).

Свойства растворимых и нерастворимых оснований. Взаимодействие щелочей с кислотами, нерастворимых оснований с кислотами. Разложение гидроксида меди (II) при нагревании.

Взаимодействие гидроксида цинка с растворами кислот и щелочей.

Действие кислот на индикаторы, взаимодействие кислот с металлами.

Опыты, иллюстрирующие генетическую связь между основными классами неорганических соединений.

Список практических работ:

Приемы обращения с лабораторным штативом и спиртовкой.

Очистка загрязненной поваренной соли.

Получение и свойства кислорода.

Получение водорода и исследование его свойств.

Приготовление растворов солей с определенной массовой долей растворенного вещества.

Решение экспериментальных задач по теме «Важнейшие классы неорганических соединений».

9 класс

Раздел 1. Многообразие химических реакций.

Классификация химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-Восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций с помощью метода электронного баланса. Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции. Термохимические уравнения. Расчеты по термохимическим уравнениям.

Скорость химических реакций. Факторы, влияющие на скорость химических реакций. Первоначальное представление о катализе. Обратимые реакции. Понятие о химическом равновесии.

Химические реакции в водных растворах. Электролиты и неэлектролиты. Ионы. Катионы и анионы. *Гидратная теория растворов*. Электролитическая диссоциация кислот, оснований и солей. Слабые и сильные электролиты. Степень диссоциации. Реакции ионного обмена. Условия течения реакций ионного обмена до конца. Химические свойства основных классов неорганических соединений в свете представлений об электролитической диссоциации и окислительно-восстановительных реакциях. *Понятие о гидролизе солей*.

Раздел 2. Многообразие веществ.

Неметаллы. Галогены. Положение в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства галогенов. Сравнительная характеристика галогенов. Получение и применение галогенов. Хлор. Физические и химические свойства хлора. Применение хлора. Хлороводород. Физические свойства. Получение. Соляная кислота и ее соли. Качественная реакция на хлорид-ионы. Распознавание хлоридов, бромидов, иодидов.

Кислород и сера. Положение в периодической системе химических элементов, строение их атомов. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Сероводород. Сероводородная кислота и ее соли. Качественная реакция на сульфид-ионы. Оксид серы (IV). Физические и химические свойства. Применение. Сернистая кислота и ее соли. Качественная реакция на сульфит-ионы. Оксид серы (VI). Серная кислота. Химические свойства разбавленной и концентрированной серной кислоты. Качественная реакция на сульфат-ионы. Химические реакции, лежащие в основе получения серной кислоты в промышленности. Применение серной кислоты.

Азот и фосфор. Положение в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак. Физические и химические свойства аммиака, получение, применение. Соли аммония. Азотная кислота и ее свойства. Окислительные свойства азотной кислоты. Получение азотной кислоты в лаборатории. Химические реакции, лежащие в основе получения азотной кислоты в промышленности. Применение азотной кислоты. Соли азотной кислоты и их применение. Азотные удобрения.

Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора (V). Фосфорная кислота и ее соли. Фосфорные удобрения.

Углерод и кремний. Положение в периодической системе химических элементов, строение их атомов. Углерод. Аллотропия углерода. Физические и химические свойства углерода. Адсорбция. Угарный газ, свойства и фозиологическое действие на организм. Углекислый газ. Угольная кислота и ее соли. Качественная реакция на карбонат-ионы. Круговорот углерода в природе. Органические соединения углерода. Кремний. Оксид кремния (IV). Кремниевая кислота и ее соли. Стекло. Цемент.

Металлы. Положение металлов в периодической в периодической системе химических элементов, строение их атомов. Металлическая связь. Физические свойства металлов. Ряд активности металлов (электрохимический ряд напряжений металлов). Химические свойства металлов. Сплавы металлов.

Щелочные металлы. Положение щелочных металлов в периодической системе, строение их атомов. Нахождение в природе. Физические и химические свойства щелочных металлов. Применение щелочных металлов и их соединений.

Щелочноземельные металлы. Положение щелочноземельных металлов в периодической системе, строение их атомов. Нахождение в природе. Магний и кальций, их важнейшие соединения. Жесткость воды и способы ее устранения.

Алюминий. Положение алюминия в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Применение алюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства железа. Важнейшие соединения железа: оксиды, гидроксиды и соли железа (II) и железа (III). Качественные реакции на ионы Fe^{2+} и Fe^{3+} . Раздел 3. Краткий обзор важнейших органических веществ.

Предмет органической химии. Неорганические и органические соединения. Углерод - основа жизни на Земле. Особенности строения атома углерода в органических соединениях.

Углеводороды. Предельные (насыщенные) углеводороды. Метан, этан, пропан - простейшие представители предельных углеводородов. Структурные формулы углеводородов. Гомологический ряд предельных углеводородов. Гомологи. Физические и

химические свойства предельных углеводородов. Реакции горения и замещения. Нахождение в природе предельных углеводородов. Применение метана.

Непредельные (ненасыщенные) углеводороды. Этиленовый ряд непредельных углеводородов. Этилен. Физические и химические свойства этилена. Реакция присоединения. Качественные реакции на этилен. Реакция полимеризации. Полиэтилен. Применение этилена. Ацетиленовый ряд непредельных углеводородов. Ацетилен. Свойства ацетилена. Применение ацетилена.

Производные углеводородов. Краткий обзор органических соединений: одноатомные спирты (метанол, этанол), многоатомные спирты (этиленгликоль, глицерин), карбоновые кислоты (муравьиная, уксусная), сложные эфиры, жиры, углеводы (глюкоза, сахароза, крахмал, целлюлоза), аминокислоты, белки. Роль белков в организме.

Понятие о высокомолекулярных веществах. Структура полимеров: мономер, полимер, структурное звено, степень полимеризации. Полиэтилен, полипропилен, поливинилхлорид.

Список лабораторных опытов

Реакции обмена между растворами электролитов.

Качественные реакции на катионы и анионы.

Действие индикаторов на растворы солей.

Распознавание сульфид-ионов в растворе.

Распознавание сульфит-ионов в растворе.

Распознавание сульфат-ионов в растворе.

Взаимодействие солей аммония со щелочами.

Качественная реакция на углекислый газ.

Качественная реакция на карбонат-ионы.

Рассмотрение образцов металлов.

Взаимодействие металлов с растворами солей.

Ознакомление с образцами важнейших солей натрия, калия, кальция.

Ознакомление с природными соединениями кальция.

Получение гидроксида алюминия реакцией обмена. Взаимодействие гидроксида алюминия с кислотой и щелочью.

Получение гидроксида железа (II) и гидроксида (III).

Список практических работ

Изучение влияния условий проведения химических реакций на ее скорость.

Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов».

Получение соляной кислоты и изучение ее свойств.

Решение экспериментальных задач по теме «Кислород и сера».

Получение аммиака и изучение его свойств.

Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов. Решение экспериментальных задач по теме «Металлы».

Тематическое планирование

8 класс <u>(2 ч. в неделю, всего</u> <u>70 ч.)</u>

Темы, входящие в разделы программы	Количество часов	Оборудование центра «Точка
		роста»
Основные понятия химии (уровень атомно-молекулярных представлений)	51 часов	
		Цифровая лаборатория по химии
		(датчик температуры окружающей
		среды, датчик
		электропроводности, датчик
		температуры термопарный, датчик
		уровня рН), весы электронные
		(набор ОГЭ по химии)
Периодический закон и периодическая система химических элементов	7 часов	
Д.И.Менделеева. Строение атома		
Строение вещества. Химическая связь	7 часов	
		Цифровая лаборатория по химии
		(датчик температуры окружающей
		среды, датчик
		электропроводности, датчик
		температуры термопарный, датчик
		уровня рН), весы электронные
		(набор ОГЭ по химии)
Резерв	5 часов	

9 класс (2 часа в неделю, всего 70 ч.)

Темы, входящие в разделы программы	Количество часов	Оборудование центра «Точка
		роста»
Многообразие химических реакций	15 часов	Цифровая лаборатория по

		химии (датчик температуры окружающей среды, датчик электропроводности, датчик температуры термопарный, датчик
Многообразие веществ	43 часа	уровня рН) Цифровая лаборатория по химии (датчик температуры окружающей среды, датчик электропроводности, датчик температуры термопарный, датчик уровня рН)
Краткий обзор важнейших органических веществ	9 часов	
Резерв	3 часа	